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J. Phys. A:  Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Motions in a Bose condensate 
I. The structure of the large circular vortex 

P. H. ROBERTSand J. GRANT 
School of Mathematics, University of Newcastle upon Tyne, Newcastle upon 
Tyne, KEl 7RU, England 
illS. received 21st M a y  1970 

Abstract. A procedure is given which in principle permits the exact evaluation 
of any term in the asymptotic expansion in a/c of the velocity U ,  and energy E 
of a circular vortex line of radius c in a Bose condensate (where a is the healing 
length). The procedure is used to obtain the two leading terms (previously only 
inaccurately determined by a variational calculation), namely, 

4nc 

where K denotes the quantum of circulation, and p denotes the fluid density a t  
infinity. 

1. Introduction 
I t  is well known that the kinetic energy d per unit length of a classical rectilinear 

vortex line of circulation K and core radius n in a fluid of density p can be written in 
the form 

E" = &,+&, (1.1) 
where 
of the motions in the interior of the core: 

is the kinetic energy of the motions in the exterior of the core and 8, is that 

8, = n p  1' uQ2r dr. 
0 

Here C is the cut-off distance, representing the size of the container which must be 
introduced so that 8, converges, and u@(Y) is the circular velocity within the core of 
the vortex and is such that uo(a) = ~/27 ia  (the circulation condition); r, +, x are 
cylindrical coordinates. The simplest internal structure to assume is the uniform 
vorticity core for which U@ = tcr/2va2, giving B, = p ~ ~ / 1 6 7 ; . .  

It is physically clear that the flow associated with a circular vortex ring whose 
radius c is large compared with a must resemble closely the corresponding rectilinear 
vortex above, provided its internal structure is the same.? In  fact it may be shown 

t Strictly speaking, it is impossible to obtain a steady-state circular vortex by postulating 
a constant vorticity across its core (Lamb 1945--6 161) but steady solutions may be obtained 
by assuming that the vorticity of the ring is M r i , ,  where ri, denotes distance from the axis of 
symmetry and M is a constant. For small aic there is scarcely any difference. 
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56 P. H .  Roberts and J .  Grunt 

that the total (kinetic) energy E of the circular vortex is given by 

E = 271.~8 (1.4) 
(i.e. 8 times its circumference) provided the cut-off distance C in (1.2) is properly 
related to c. Indeed since, to the leading order (as n/c -+ 0), 

we should take C = 8c/e2, so that, for example, for a vortex with a uniform vorticity 

A simple, clear-cut, qualitatively correct model of vortices in liquid helium is 
provided by the Bose condensate which can be characterized by a wave function $ 
whose normalization yields the total number of condensed particles (Bogoliubov 
1947, Penrose and Onsager 1956). This low-density approximation evades the 
quantum many-body-problem by a self-consistent field approximation, incorporating 
a short-range repulsive potential V, of delta-function type, and was proposed in 1958 
by Ginzberg and Pitaevskii (1958-see also Gross 1961 and 1963). The  system is 
then described by the one-particle distribution wave function $( x, t )  obeying 

where 114 is the particle mass, and 

L,!i2dV = ic: 

is the total number of particles. The number current density is 

($*V$--$V$*) d V  
2i 

(1.7) 

The  structure of the rectilinear vortex in this theory has been fully examined by 
Ginzburg and Pitaewkii (1958) who find results of the form (1.1) and (1 -2) provided 
8 is redefined by 

(1.10) 

where $ = $, exp(i+), and the bar through the integral sign denotes the finite or 
convergent part of the integral: its presence is required since the integral diverges 
logarithmically at its upper limit, and this divergence has already been recognized 
through the introduction of the cut-off distance C in 6,. Here a and pm are the 
quantum core radius and density to be defined below. Ginsburg and Pitaevskii (1958) 
obtained, by numerical integration, the result 

(1.11) 

(a value we have independently confirmed). 
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The  question of the form of E for a circular vortex ring has been the subject of an 
intricate variational calculation by Amit and Gross (1966). It is one of the objectives 
of this paper to demonstrate that E may be obtained in precisely the manner expected 
from the discussion of the classical vortex above: (1.4) still holds provided we take 
C = 8c/e2 in (1.1 l), and therefore 

E = + p P ~ 2 ~  In - -1062 . (f) i (1.12) 

This result is, to the order in cia displayed, exact. That this should be the case has 
already been conjectured by Donnelly and Roberts (1969--9 3). We also obtain 
independently from an asymptotic analysis the velocity U,, and impulse p of the ring 
as 

(1.13) 

p = 7ip,uc2 (1.14) 

thereby verifying that the Hamiltonian relation U. = aE/ap is satisfied. A secondary 
objective of this paper is to lay the foundation for the second paper in this series, in 
which the vibrations of vortex lines in the condensate are examined. 

2. Basic theory 
Equations (1.7) to (1.9) may be reduced to fluid mechanical form by writing 

# = R exp(iS/A) (2.1) 
where R and S are real. Substituting into (1.7) and separating real and imaginary 
parts, we obtain 

and 

where 

8R2 ‘R2 
- = - v .  ( j p )  %t 

as 1 
%t 2LW 

- _  = - (VS)2+ I1 

By (1.8) and (1.9), we have 1, R2 d V  = N (2.5) 

/ , R 2 V S d V  = j .  (2.6) 

Thus &’R2 is the mass density and VSjiW may be regarded as the fluid velocity U .  
(Then (2.6) becomes J,pu dV = j . )  Write, therefore, 

p = :VR2 
1 

where E ,  is a constant. It is clear from (2.1) that, since $ must, on physical grounds, 
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be single valued, the multivaluedness of S must be restricted to additive multiples of 
2nh = h. Then (2.8) indicates that 4 can be changed only by units of h/iW; in 
particular, the unit of circulation for a vortex flow, namely K = Jcu , d r  ( =  change in + around a circuit C threading the core) must be h/M.  

In  terms of the new variables (2.7) and (2.8), equations (2.2) to (2.4) become 

aP -+v . (pu) = 0 

a4 - = p + ( g  
at 

at 

where 

and 
U =  - 0 4  

(H  -E,? 
lY! 

(VoR2-E,) h2 V 2 R  
or equivalently 

@ =  
1M 2iW2 R 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

where the last term on the right is the so-called ‘quantum pressure’ (cf. Gross 1963). 
Writing 

ti ME,  
a =  p m  =- 

(2iTE,)1j2’ VO 
(2.13) reduces to 

(2.14) 

(2.15) 

Here a is often called the healing length, and in applications is typically a few A. 
For systems of linear dimensions L large compared with a, the solutions may be 
conveniently thought of in two parts: (i) an exterior solution, far from boundaries 
and vortex lines, in which the last term in (2.15) is negligible, and (ii) an interior 
solution having the nature of a boundary layer, here called a healing layer, for points 
near boundaries or near to the cores of vortex lines. The quantity L/a  might be called 
a quantum Reynolds number. 

The expectation value of the total energy 8 of the system is given by (Fetter 1965) 

(2.16) 

where the delta-function potential has been used; alternatively, by (2. l), 

* 2  1 2 dV+- 1 1 R 2 ( ~ S ) 2  d V +  - VO 1 R4 dV. (2.17) 8 = -  ( V R )  
2 M ,  2: 2M v 2 v  

The first of these terms can be regarded as a ‘quantum energy’. The  second is the 
usual kinetic energy and the third is a potential energy term. The energy relative to 
the ground state is obtained by subtracting from € the energy of a uniform system 
having the same number of particles. 
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If we suppose that the fluid fills a box of volume Y and that initially it is at rest 
at density R, and potential energy 6,  then 

6, = +Vo I, RU4 dV = QV0Ru4V (2.18) 

and the total number of particles is 

RZt2 d V  = RU2V. (2.19) 

In  many applications, such as those we consider in this paper, it is supposed that a 
disturbance is created in a localized region W of the box far from the walls and results 
are sought which are valid in the limit Y -+ CO, the disturbed volume 9 being fixed. 
The potential energy is increased by the disturbance from (2.18) to the value 

&, = QV, R4 d V  (2.20) 
v 

but the number of particles 

N = R 2 d V  (2.21) 
v 

will be the same. Outside W, R will take an almost constant value R,, say. In the 
limit V + CO (9 remaining fixed), (2.21) will give, in order of magnitude, 

N = (V-3?)Raz+L3R2 (2.22) 

where I? denotes the mean value of R over L3. Thus by (2.19) and (2.22) 

(2.23) 

The point that R, and R, are different and should be distinguished was made by 
Amit and Gross (1966). From (2.18) to (2.20) it follows that 

Since, according to (2.23), (R,2-R,2)2 is O ( l / Y z ) ,  in the limit Y 3 'K (W fixed), 
vie have, in the same limit, 

6,,-8, = $Vo (R2-R,2)2 dV L (2.25) 

i.e. in working out the increase in potential energy it is unnecessary, when form (2.25) 
is used, to make the distinction (2.23) between R, and R,. 

Outside the healing layers where the last term in (2.15) is small, the flow is 
governed essentially by Euler's equation for a barotropic fluid for which: 

(2.26) 
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giving by (2.10) Bernoulli's result for a compressible fluid, namely, 

(2.27) 

where p ,  = Eop,,/M. In  many situations of interest, E, is large compared with 
&Wu2 (or equivalently Q 9 3 ~ ~ ) ) .  If in addition the flow is nearly steady 
(,8u/i3tl < Ev/iVL), then (2.27) gives p = p,(= constant), i.e. by (2.9), 

v2+ = 0 (2.25) 

which defines incompressible potential flow. 

of length, pmu3 as the unit of mass and A/2EV as the unit of time, i.e. 
We now cast the basic equations in non-dimensional form by taking a as the unit 

h 
2EV h 

x + a x ,  t - t - t ,  

Then equations (2.9) to (2.11) are unaltered, but (2.13) becomes 

In a steady flow, we have by (2.9) to (2.11), 

v. (pV#) = 0 
v 2 p  

p = l-(V+)'+---. 
P1I2 

In our non-dimensional units (2.29) writing 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) EV + 2pxa3 - B 
1W 

we obtain from (2.17) I ( V P ~ ~ ) ~  d V + +  P ( V + ) ~  dV+B I p 2  dV. (2.34) 

We note that the variation 6 of € subject to the constraint that Jvp d V  = constant is 

6 6  = / [6p{~(V+)2}+~V+. V S + + ( V P ~ ' ~ ) .  (VSp'~2)++p6p-@p] d V  

(where a Lagrange multiplier of $ has been assumed so that the final results conform 
with the dimensionalization selected). Integrating by parts, assuming 6p and 64  
vanish on the boundaries, we obtain 

U V 2)  

V 

(2.35) 

If Sb vanishes for all independent variations of 6p and 64, then (2.31) and (2.32) must 
hold. This variational principle for these equations is essentially the one Amit and 
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Gross (1966) used in their study of the circular vortex ring. Using (2.17), (2.20) and 
(2.25), the excess energy 6 -bo of the disturbed system over that of the correspond- 
ing uniform system is found, in dimensionless units, to be 

8-8, = I ( ~ p ( V ~ ) 2 + 4 ( V p 1 i 2 ) 2 $ ~ ( 1 - p ) 2 ) d I j  = J' e,dV (2.36) 
-tr -tr 

say. 

a vector potential (or stream function). Let 
A convenient alternative formulation of the equations (2.21) and (2.22) is through 

1 

P 
u = - V X A  (2.37) 

where we assume 

V . A = O .  (2.38) 

This automatically satisfies the continuity equation (2.3 1) and, from the irrotationality 
condition (curl U = 0) implied by (2.11), we have 

1 

P 
V 2 A  = - Vp x (V x A ) .  

Also (2.32) becomes 

(2.39) 

(2.40) 

In particular, for the steady three-dimensional motion of a fluid with an axis of 
symmetry Ox we can introduce a stream function denoted by $( = A J 6 ) .  If (6, 8, x) 
are cylindrical polar coordinates with x in the direction Ox then, setting p = R2, we 
obtain 

1 1 

P 
Vzp1'2 = p 1 ' 2 [ p  - 1 +? (V x A)2 . 

1 
R2 

u = - curl i$ is) (2.41) 

where i, is the unit vector in the 8 direction. The basic equations (2.39) and (2.40) 
now become 

2 
R 

A$ = - R . # (2.42) 

(2.43) 
1 
R3 v ' R  = R(R2 - 1) + - (V$)' 

where 

(2.44) 

(2.45) 

(The use of + in (2.41) to (2.45) and henceforward as a stream function, and not a 
wave function, should not cause confusion.) 
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C v‘ 0 

3. Solution for a circular vortex 
Measurements of the circulation of vortices in liquid He I1 have confirmed that, 

as predicted, the circulation is quantized in units of K = h/M. I n  our non-dimensional 
units this quantum of circulation is 27. We consider only a vortex ring with one unit 
of circulation, as these are energetically the most favourable; the ring has radius ac 
(or c in non-dimensional units) where c 9 1. T h e  frame of reference adopted is one 
in which the vortex is at rest and we can then apply the basic steady equations (2.42) 
and (2.43). The singularity in curl U is on the circle W’, i.e. 2: = 0, C% = c, and On is 
the axis of symmetry as shown in figure 1. We also introduce the coordinates (T, x, e), 

‘ ‘ncreaslnt ,x increasing 
-G- 

P~ 
X - 

C v 

Figure 1, Illustrating the circular vortex and its related coordinate systems : 
(G, 8, z) are cylindrical coordinates, (T ,  x, 8) are displaced polar coordinates. 
The  singularity associated with the vortex line is indicated by V and 1’‘ in the 

cross section shown. 

often referred to as displaced polars, where 
C Z = C - T C O S X  
z = Ts inx .  

Then the scale lengths and derivatives are 

(3.1) I hT = 1, h, = T ,  he = G 

- sinX-+-- 
a a s inx  2 _ -  - -cosx,+-- 

a 3  fiT T 2x’ ax aT T 2x 
a cosx 2 2 _ -  

and (2.41) yields, in displaced polar components, 

We now examine the structure of the solutions in the limit c -+ CO. The mathe- 
matical problem is one of inner and outer expansions, corresponding roughly to the 
solution ‘inside’ and ‘outside’ the core of the vortex where by ‘core’ we mean a toroid 
centered on VV’ whose radius T is, in physical units, O(a). For the inner expansion 
we iterate about the solution for the rectilinear vortex in the obvious way, and examine 
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the form of the resulting solution in the limit of T -+ to. I n  the outer region we use a 
stretched coordinate s = T/c and examine the solution for s + 0. Finally these two 
asymptotic solutions ( T  -+ to and s 3 0) are matched; the solution is then complete 
and quantities such as vortex energy and velocity can be computed. 

Interior solution 
Expanding $I, R by 

m m 

$ = 2 c ~ - ~ $ ~ ( T , x ) ,  R = 2 C-nRn(T,X) (3.3) 
n=O n=O 

we see that as c -+ to with T fixed, we are always inside the ‘core’ of the vortex. Also 
as c + CO the solution near to the singularity .of curl U is increasingly like that for 
the straight vortex: thus $o and R o  are the solutions for a straight vortex and both are 
independent of x. When T and x are used as independent variables, equations (2.42) 
and (2.43) become 

(cg -sinX- . i3 8%) 1 8%) 1 
aT2 T2 ax2 T(c- T COS X) 2x1 
-+--+ 

1 
R3(c - T COS x ) ~  

= R(R2 - 1) + (3.5) 

On substituting (3.3) into (3.4) and equating coefficients of c and the constant term, 
we obtain 

). (3.7) 
d$o 1 a*1 2 %dRo R1 d*o dRo d*o aR1 -+- __+cos x -+- _. = - - - - - _. -+- __ 
d T  T aT Ro 8 T  d T  R, d T  d T  d T  aT 

a2*1 1 827J1 

aT2 T2 ax2 
On substituting (3.3) into (3.5) and equating coefficients of the constant term and 

we obtain 

-+- - = Ro(RO2- 
d2R, 1 dRo 
dT2  T d T  

Equation (3.6) can be integrated to give 

-- W O  Ro2 - E-- (K = constant). 
dT T 

(3.10) 
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Now for T + O ,  ux +d#olRo2dT = NIT. 
circulation, we must have 

By the condition on quantization of 

u,T d~ = 277. (3.11) 

Thus c( = 1 and by (3.10) 

d T -  T ‘  
After substituting for d$,/dT in (3.8), we obtain 

d2R, 1 dR, 
dT2  T d T  
-+- - = Ro 

(3.12) 

(3.13) 

A solution to this equation is required in which R,, goes asymptotically to 1 for 
T + cc and $,, + 0 as T + 0. For small T me have 

R, = ~ T + o ( T ~ )  (3.14) 

where k is a constant which can be obtained numerically, and for large T we have 

(3.15) 

Equation (3.13) was solved numerically subject to these boundary conditions. The 
solution is required later in evaluating numerical constants in the energy and the 
velocity of the vortex. The results are not presented here since they have already been 
given by Ginzburg and Pitaevskii (1958) and later, and in more detail, by Kawatra 
and Pathria (1966). 

Integrating equation (3.12) we find that for large T 
1 1  

2T2 2T4 
$o = K+lnT--+-+O - (3.16) 

where K is a constant. If we now write 

$ l ( X >  T) = cosx$1(T), Rl(X, T) = COSXRl(T) 
and substitute into (3.7) and (3.9) we obtain the fourth-order system 

2R,idR, R I  dR,j 2 dR, d#, R 2  -+- __ -0 (3 17) d2#1 1 d$l $1 

dT2  T d T  T2 T d T  RD d T  R,  d T  d T  T 
d2R, 1 dR, 2R1 2 d$l 2R, dR, 
dT2 T d T  T2 R , T d T  T d T  . 
-+- -+- -(3R,2-1)R1- __ - = - +-. (3.18) 

We now show that the system must be subjected to four ‘boundary) conditions, 
which therefore determine a unique solution. 

For small T, the solutions for the complementary function defined by (3.17) and 
(3.18) are 

$1 at T 3 ,  
z,h1 at T In T, 

$1 CK T, 

R, cc T2 
R,  x In T 
R, cc 1 

1 
$1 Kr’ 1 

RI at-. 
T2 
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The second and fourth possibilities may be ruled out immediately on physical grounds. 
The third corresponds to an exact solution for the complementary function of the 
form #, = d#,/dT, and R, = dRo/dT. T o  include this would imply that the vortex 
core is at a point slightly displaced from T = 0, contrary to supposition. Thus, only 
the first solution is possible and, since a particular integral of the system is #, = 0, 
and R1 = &kT2, the general solution to (3.17) and (3.18) for T -+ 0 is of the form 

= pk2T3, RI = ykT2 (3.19) 

where y -P  = 9 and P(or y )  is as yet undetermined. 

from (3.15). The  resulting equations are 
To  examine the solution of (3.17) and (3.18) for large T, we substitute for Ro 

1 ---+---- - -+-+ 
dT2 T d T  T2 i T3 T5 
d2*1 1 d*l *1 2 10 

1 1 2  
- - --+-+-+... 

T T3 T5 

2 1 11 -+-- + - d2R, 1 dR, 5R, 
dT2 T d T  T 2  

2 9  
T 4T" 

= -+.+ ... . 

(3.20) 

(3.21) 

The complete solutions are of the form 

- (4B+l) -+O - 
lnT 2 T  2 T  

(In T)2 
= -$T In T+BT+- 

+ ... 1 (I?++) (In T)2 In T A (6B+5)  
2 T  T 2 ~ 3  2 ~ 3  

+---(+-4B)+- - ___ 
T3 4T3 

R1 = - In T-  -+- 

1 5  
+Eexp(-%/2T) (3.23) 

where A, B, D and E are constants, The growing terms involving exp ( d 2 T )  cannot 
be matched with the outer solution to come, and we must therefore impose the fourth 
condition that D = 0, which essentially determines P ,  The problem is now clearly 
seen to be well posed. The  terms involving A and B match with corresponding 
expressions in the expansion of the outer solution about s = 0. 

Equations (3.17) and (3.18) have an interesting property which is important later. 
If we multiply (3.18) by T(dR,/dT), substitute into this for {(2 dRo/dT) . (d$,,'dT)}/R0 
4x 
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from (3.17), and rearrange using (3.13) me obtain 

Integrating from 0 to CO 

= f," 
Then, substituting the values of RI ,  $1, and R o  for small and large T we have 

4-2B = 1: T ( z ) *  d T +  ;to * x  Ro2 T d T + l  

(3.24) 

(3 2 5 )  

(3 26 )  

where B is the constant appearing in (3.22) and (3.23). Again the bar through the 
second integral denotes its finite part, for although Ro2/T behaves like 1/T for large T, 
the divergent logarithmic term is cancelled by a similar term from the left-hand side 
of (3.25). Thus 

(3.27) 

Exterior solution 
For the outer variable we replace T by s = TIC, so that as c + io with s fixed, we 

have the solution 'outside the core' of the vortex. That is we should approximate to a 
region of constant density in which $ will give a flow common to the exterior of all 
vortex rings. With respect to s and x, equations (3.4) and (3.5) become 

-+--+ - 2(8$ 3R 1 2$ 8R) 

1 2R "1 P R  1 a2R -+--+ /(I -2s cos x> -+sin x - 
as2 sa 2x2 s( 1 - s cos x) 1 2s ax J 

-sinX- - _  --+--- (3.28) 
Ps2 s2 ax2 s(1 -scosx) as ax R as as s2 ax ax 
a2$ 1 az$ i" 

1 1 24 1 a$ 
= cZR(R2 - 1) + - (3 29) 

c2R3 (1 - s cos X I ~ (  (%I + 2 i,! ) ' 
Expanding $ and R by 

X W 

$ = 2 c ' - ' ~ $ ~ ( s , x ) ,  R = 2 c - ' ~ R ~ ( s ,  X) (3.30) 
n = O  n = O  

substituting (3.30) into (3.29) and equating powers of c2 we obtain 

Ro(R,2- 1) = 0 
and hence R o  = 1. The  constant terms in (3.29) then give 

1 1 R - - _  1 -  2 (1 - s cos x ) 2  
(3.31) 
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Substituting (3.30) into (3.28), we obtain 

A+o = 0 (3.32) 
where the operator is given by (2.44), and 

From (3.29) we also have 

(3.34) 

The  appropriate solutions of  A+ = 0 for a ring are given by Dyson (1893) as 
linear combinations of the elementary solutions $ = GJ,( 6, x), where 

Dyson also provides expansions of these solutions about s = 0;  these are 

G J ~  = 1-3 ~ S C O S  x - 4 scos x - i5 IS~COS 2x + 41s' + . . . (3.35) 
1 

c2s 
C Z J ~  = -( C O S X + ~ Z S +  ...) (3.36) 

etc., where 

I n  the present case, to the zeroth order, we have 

1 = ln(:)-2. 

1 
2c 

I+!I~ = - UoG2+AlGJ1 (3.37) 

where Al is a constant to be determined by matching the inner and outer solutions. 
The growing solution U0G2/2c corresponds to a uniform flow at infinity. In  our frame 
the vortex is at rest and the fluid at infinity is moving. In  a frame in which the fluid 
at infinity is at rest, U. will represent the speed of the vortex ring. A term like this 
might have to be included at any level in the expansion for $. The U. here can only 
give the translational velocity of the ring to the leading order in c - ~ .  Substituting +o 
into equation (3.31) we obtain 

AI2 A121cosX cosx 
2s2 2s S 

R +A,- ( - Uoc - A,) + O(1) (3.38) 1 -  

and (3.33) then becomes 

-sinX- 
a2+1 1 
as2 s2 8x2 s(1 

-+--+ 
A13 A131 cos x 2A12Uoc cos x 3A13 cos x 

= 2(-  7 - - - + ...). (3.39) 
s3 s3 2s3 
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This equation gives 

S 

1 A13 A13 
2c 2s2 2s $I - - - U ~ C G ~ + C ~ A ~ L J J ~ -  - - 1 -  

(3.40) 
where A ,  is a constant and equation (3.34) for R2 yields 

AI2 12 I 
R - - - ( A ~ 2 + 8 ) + A 1 4 - ~ ~ ~ ~ + ( 2 ~ 0 ~ + ~ A 1 ) A 1 3 - c o ~ ~ + 0  8s4 2 s 3  s3 

2 -  

Matching 
The inner solution for T + 03 must match the outer solution for s -+ 0 to all 

terms. The process fixes all the unknown constants and gives a consistent solution. 
Letting X = In 8c- 2, then In T = In sc = A- 2. From the inner solution for R for 
large T ,  we have 

cosx In T B+B) ( l n T ) 2  1 n T  A 
f * * .  +-L-L' T -~ +- (Q - 4B) +- 1 9 R =  1---- i 2T2 8T4 1 c \ 2 T  T 2T3 2T3 T 3  

+ ... +Eexp(  - +T) 
( 6 B + 5 )  

-___ 
T3 

When T is replaced by sc and In T by X - I ,  discarding the experimentally small term, 
we obtain 

I 
"'I R = 1+- - - - - C O S X +  

1 ( ,  9 12 I 
c4\ 8s4 2s3 s3 

c2 2s2 2s 

+- - -+- cosx+-cosX(-~-:+2B)+ ... (3.42) 

From the outer solution for R for small s we have 

2 cos x 
- A 1 2 - ~ ~ ~ ~ - A 1 - ( U o ~ + L 4 1 ) + . . .  

2s S 

12  1 + - - - (A12 + 8) + A12 - cos x + A13 - cos x(2U0c +$Al) + ...I. (3.43) 
C 14( ::: zS3 s3 

A comparison of corresponding terms in (3.42) and (3.43) yields 

A 1 2  = 1, -A,( Uoc + A,) = Qh - B -6, A 13( 2 U O C  - $ -4 I) = - h + 2B - B, 
(3.44) 

Similarly by matching the inner and outer solutions for I+!J we obtain the relations 

,41 = -1, -(UOc+&A1) = B-Qh, A I 3  = -1, 
-A12(2U,$+#L41) = Q( -2h+4B+ 1). (3.45) 

All of these equations (3.44) and (3.45) show that 

A1 = -1, UOC = 4(h+1-2B). (3.46) 
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Substituting for - 2 B  from (3.27) we finally obtain 

1 
U, = - [ l n 8 c - l + ( f ~ ~ d T +  2c j: T ( g ) 2 d T + : ) ] .  (3.47) 

It is worth noting that the relations (3.46) are confirmed if the inner expansion is 
taken to order c - ~  and matched with the outer solution, although it is necessary to 
proceed even further if U. and E are to be obtained to a higher order. 

4. Energy and impulse 
The excess energy of the system has already been given in (2.36). I n  the present 

application to a circular vortex, this may be considered to be composed of a core 
energy, 6, (say), and a contribution b, from outside the core. Since, however, the 
quantum vortex (unlike its classical counterpart) does not have a precisely defined core 
surface, this division is to some extent arbitrary. To be more definite, we introduce 
an arbitrary function q(c) such that 1 < q 4 c, for c -+ CO. Then the distance 
T = q goes to CO with c (since q 3 1) while in the same limit s = qlc tends to  zero 
(since q 4 c). Thus T = O(q) corresponds to the matching region used at the end of 
9 3, which may itself be regarded as bounding the core of the vortex. 

The integral (2.36) is divided into 

CI = / e D d V  (4.1) 
Tcq 

in which e, is evaluated using the inner solution, and 

i,, d v  
= 

in which e ,  is evaluated using the outer solution. The  former integral diverges as 
q -+ cc, and the latter integral diverges as q/c + 0, but, when added to give &-bo, 
the divergences cancel as we shall see. This is only to be expected. 

I n  computing the kinetic energy, and impulse of the vortex flow, we must return 
to the coordinate frame in which the fluid velocity is zero at infinity. This is achieved 
by subtracting from $o in (3.37) the uniform flow. In  the inner region 

1 + = c $ O + + ~ +  ..., R = Ro+-Rl+  ..., d V =  T(c-TcosX)dXdTdB. 
C 

Then using (4.1) we find that to the leading order in c 

6, = f S q d T  ~'"dX/~cT(--(--)1+(-----) 1 d+o dRo ++(l-Ro2)2)d0 
0 W O  Ro2 d T  d T  

or using (3.12) 
Ro2 dRo T 

8, = 2r2c 1, [-+- + T(=) + (1 - d T  (4.3) 

which as q +- cc can be rewritten as (see statement preceding (3.27)) 
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Also in connection with the remark made after (4.2) we further rewrite this as 

4 Ro2 
8, = 2v2c (In8c-2)- i 

+isq(l 0 -Ro2)2TdT).  (4.5) 

In  the outer region 
RI R = l+-+ ... 
C2 

so that to the leading order 

&E = +J  (V4)2 dV. 
T>q 

Outside the core we have from (2.28) 

y 7 2 4  = 0. (4.7) 

If we now apply the divergence theorem to (4.6) in the simply connected region out- 
side a very thin disk s, which encloses the vortex 'core' we obtain 

where S, is the sphere at infinity of radius R. The contribution to the integral from 
S ,  is of order R - 3  and can be neglected. We are left with 

4v4 dS. 
S D  

The velocity potential at any point P due to a vortex is given by 

(4.9) 

K 

4 P  = &QP 

where QP is the solid angle subtended by P at the singularity of the vortex (Lamb 
1945). Then if SD+ and SD- are the upper and lower sides of SD, we have 

K K 4SD' = = T ,  48,- = _ - -  - -7r. (4.10) 
2 

Also V4 . d S  = (&l1/6j26j)2v6j d6j, and hence, to the leading order, we obtain 

adding together GI and 8, from (4.5) and (4.11) as c -+ CO ( q  + CO), we find 

(4.11) 

(4.12) 
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The last integral in (4.12) can be evaluated by integrating by parts, and using (3.13), 
(3.14) and (3.15), yielding the value +. We therefore finally obtain 

T d T +  Ro2 ,," Ti$)2  dT+$)]. (4.13) 

It is easily shown that when the formal definition, that is, 

is used to calculate the momentum of a classical vortex, improper integrals are 
obtained which can be made to take many values depending, in the limit as the volume 
of integration V + to, upon the shape of that volume (Lin 1963). The ambiguity 
can be overcome by introducing the concept of impulse. It should be emphasized 
that, even in the quantum case, the formal definition of momentum based on (1.9) 
leads to improper integrals by analogy with the above. Impulse is, then, not a classical 
notion without a quantum counterpart. In  fact it appears that the correct impulse p 
for the quantum system is precisely that which is obtained to leading order for the 
classical system, that is, 

p = T K P , C 2 .  

In  our non-dimensional variables this becomes 

p = 2 2 c 2 .  (4.14) 

Collecting together the results of (3.47), (4.13) and (4.14) we have 

(4.15) 
(f: d T +  1; T ( 2 ) ' d T i i ) l  

(f: d T +  Ĵ ," T ( 2 ) '  dT+$)] 
p = 2 2 c 2  I 

and it is easily seen that these quantities obey the Hamiltonian relation 

The constant terms in brackets in (4.15) were evaluated by a numerical integration 
of (3.13) ; the values obtained agreed with those obtained by Ginzburg and Pitaevskii 
(1958). We found, in physical variables, 

4nc 
(4.16) 

It should be emphasized that these results are to be regarded as providing the leading 
pair of terms in the asymptotic expansions of these quantities as C/U -+ CO (the next 
terms would involve ( U / C ) ~  In (8clu) in the braces), and as such they are (unlike the 
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results of Amit and Gross 1966) in principle exact (the only uncertainties arising from 
the numerical quadrature). 

In  the sequel to this paper, one of us (J.G.) will consider the oscillation of these 
vortex lines. Some of the results given in this paper were presented by one of us 
(P.H.R.) at the British ilpplied Mechanics Congress, held in Nottingham at Easter, 
1969. 
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